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Abstract--In this work we propose an effective viscosity criterion for the stabilization of  annular 
gas-liquid and liquid-particle flows and an inertial mechanism which drives waves into slugs in slugging 
gas-liquid flows. Annular flow is stable when the fluid having the higher effective viscosity occupies the 
core region and the lower viscosity fluid is in the annulus. The eddy viscosity criterion is shown to be 
very consistent with published work on annular flow transitions in horizontal and vertical gas-liquid flows. 
It also applies to a variety of  liqnid-solid and gas-solid flows. In the second part of  the paper we propose 
a mechanism for explaining the growth of  initially small waves and initiation of  slugs in gas-liqnid flow. 
Copyright © 1996 Elsevier Science Ltd. 
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1. PHASE ARRANGEMENT AND STABILITY OF ANNULAR FLOWS 

It is well known that, in liquid-liquid flow or gas (vapor)-liquid flow in a pipe, a core-annular 
flow with one fluid in the core and the other fluid in the annulus appears under certain flow 
conditions. The oil forms the core in an oil-water core annular flow, and the gas phase is always 
in the core in a gas-liquid annular flow. 

Most widely accepted theories for horizontal gas-liquid flow postulate that transition to annular 
flow takes place when there is not too much liquid (the liquid level is below pipe center line) and 
the conditions are such that a finite amplitude wave on the stratified surface will grow (Taitel & 
Dukler 1976, hereafter TD). For  vertical upward flow the transition to annular flow is said to occur 
when the gas velocity reaches the minimum necessary to suspend a liquid drop of  critical size (Taitel 
et al. 1980, hereafter TBD). 

The stability of  annular flow can be discussed without any consideration of the particular 
mechanism by which the transition starts. It seems to be a rather general, if not universal principle 
that the less viscous fluid migrates to the region of  high shear, lubricating the flow (see, for example 
Joseph & Renardy 1993 or Merkle & Deutsch 1990). The same principle may also govern other 
two-phase flows when an effective eddy viscosity (molecular viscosity plus turbulent viscosity) is 
used. Here we argue that core flows with a less viscous fluid inside can be stable in turbulent flow 
when the eddy viscosity in the core is larger than in the annulus. Stable annular flow appears only 
when the gas flow in the core is very highly turbulent with a higher effective viscosity than the liquid 
in the annulus. 

Annular gas-liquid flow is regarded as a forced convection flow in which there is a liquid film 
on the wall with a continuous gas core in the center of  the channel. The simplest picture of  this 
flow pattern is to assume a laminar regime for the thin liquid film and a fully turbulent regime 
with no entrained droplets for the gas core. Neglecting the molecular viscosity of  the gas, we have: 

l'/¢ff.L = /gL, [1] 

/~.e,G = pt ,  c [2] 

where ~./L is the molecular viscosity of  the liquid and/~t.~ is the turbulent viscosity of  the gas flow. 
A conservative estimate of  the eddy viscosity of  the gas can be obtained from the well-known flat 
plate results neglecting any influence of  the typically wavy interface in evaluating gr.c. The turbulent 
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velocity profile is very flat; thus the eddy viscosity of  the gas rapidly reaches its value in the outer  
layer. This is given by the wel l -known Clauser 's  fo rmula  (White 1991) 

~T,G = 0.016pG(UG -- Ui)38 [31 

where pG is the density of  the gas, UG is the average velocity of  the gas, Ui is the velocity at the 
interface and 68 is the displacement  thickness o f  the gas flow. By assuming a one-seventh power  
law for  the gas and that  UG >> U~ we can write 

UGD ,., JGD 
UG63 ~ 16 = 1---ff [4] 

where JG is the superficial velocity o f  the gas and D is the tube diameter.  The  condit ion at which 
~tou.~ = poff, L can thus be stated as 

pGJBD ~ 1000. [5] 
#L 

Equa t ion  [5] holds when the liquid flow in the annulus is laminar.  For  example,  consider an 
a i r -wa te r  flow at 1 bar  and 25°C inside a 25 m m  tube; [5] gives JG = 30 m/s. This criterion is 
represented by the vertical line A on T D ' s  flow m a p  in figure 1. Almost  the entire annular  flow 
region cor responds  to the condi t ion #off.~ > /~o~,L, which is possibly a significant result in view of  
the simplicity of  the p roposed  model.  

At  high liquid flowrates the flow in the annulus becomes fully turbulent  and [1] is re-written as 

/~eff.L = /~T,L" [6] 

The  turbulent  viscosity o f  the liquid flow ~T,L is modeled the same way as the gas flow leading 
to the expression 

]'~T,L = 0 . 0 1 6 p L  Uc~3* [7] 
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Figure 1. Taitel & Dukler's (1976) flow map of horizontal air-water flow at 1 bar and 25"C. The pipe 
diameter is 25 mm. The solid lines stand for the theoretical transitions proposed by Taitel and Dukler. 
The slashed lines represent the experimental results given in Mandhane et al. (1974)./~,t~-.G = #0tr.L on the 

dashed~lot line. 
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where RL is density of  the liquid, UL.6 is the average velocity of the liquid film and 6* its displacement 
thickness. Assuming once more a one-seventh power law for the velocity profile in the film, we get 

UL,~fL* = UL,6 ~ - -  
JL,~D 

• 3 2  [81 

where 6 is the thickness of  the liquid film and JL,~ its superficial velocity. Thus for turbulent film 
flow the condition #o~•G =/~erf, L can be written as 

pcJaD 1 pLJL,~D 
/JL -- 2 /~L [9] 

Equation [9] holds for fully turbulent film flow. The intercept between [9] and [5] is obtained as 

pLJL ,6D _ 2000 [10] 
pL 

which is the expected result. Since the liquid flowrate is high, the amplitude of  interfacial waves 
grows dramatically and bridging of  the cross section is incipient. Thus a considerable amount of 
liquid actually fows in the core and JL•6 is much smaller than JL- If C is the fraction of  the liquid 
flowrate that flows in the core then 

JL,6 = (1 -- C)JL. [111 

Assuming now a constant value for C, [9] and [11] can be represented by straight lines C = 0.90 
and C = 0.97 which are actually parallel to TD's flow boundary B in figure 1. 

The condition at which/~eff.6 = /~efr•L can thus be summarized as follows: 

f l000 if pLJL,~D ~ 2000 (boundary A) 
p~J~D _ #L [12] 

#L 1 pLJL,zD if pLJL,~___DD > 2000 (boundary B) 
#L #L 

w h e r e  JL.6 is given by [1 l]. The value C _- 0.95 is suggested if the boundary for turbulent film flow 
is to be matched with TD's boundary. 

A comparison of [12] with existing maps on the transition to annular flow for upward gas-liquid 
flow in vertical tubes is shown in figure 2, which was extracted from TBD's work. This figure refers 
to air-water flows at low pressure and tube diameters ranging from 2 to 6 cm. Thus it can be used 
to discuss the effect of  the tube diameter on the transition. The shaded area represents the 
experimental data published by different authors (the boundary proposed by Griffith & Wallis 1961 
gives too low transition superficial gas velocities and has not been considered here). 

It is well known that TBD's transition model shows no effect of the tube diameter. However, 
as it can be seen in figure 2, even for low liquid flowrates there is a wide discrepancy in the data, 
because different authors may use different criteria to qualify visually the onset of  the transition. 
Due to such subjectivity it is not possible to conclude on the effect of  tube diameter on the basis 
of available experimental data. In our criterion, the stabilization of  annular flows involves the 
inertia of  the gas in the tube, so the effect of  the diameter appears naturally in the vertical 
boundary A. 

As can be observed in figure 2, TBD's model does not exhibit an inclined part (boundary B) 
at high liquid flowrates. This feature is displayed by our model and seems to be confirmed by others 
investigators (as for example Duns & Ros 1963). Notice that this boundary does not depend on 
tube diameter. 

According to TBD's model the transition to annular flow is not affected by liquid viscosity which 
appears in our stability criterion. Of course, stability and transition are different. However, we 
think that TBD's  transition criterion might fail if the liquid phase is highly viscous. In this case, 
even though the gas stream may have a minimum velocity necessary to lift a small droplet (as in 
TBD's model), it might not be able to displace the liquid towards the wall. This may require much 
more inertia for the gas. Our model gives precisely the minimum amount of  inertia necessary for 
this task. 
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Figure 2. Transit ion to annular  flow for upward air-water flow at 1 bar and 25°C inside vertical tubes 
with diameter ranging from 2 to 6 cm. The solid line gives the criterion for the theoretical transition 
proposed by Taitel et al. (t980). The shaded area indicates experimental data. The condition P~.c =/U~,L 

as given by [12] for D = 2 and 6 cm is represented by the dashed--dot lines. 

Ordinary lubrication layers occur frequently in gas-solid and liquid-solid two-phase flows, 
for example, in the self-lubricating flows of suspensions, a thin fluid layer appears on the wall (for 
example, see Persello et al. 1994). In all these cases the core of suspension has higher viscosity than 
the liquid layer on the wall. 

It is of interest to consider not so ordinary cases of lubrication layers in gas-solid and liquid-solid 
flows in which the fluid in the core acquires a huge eddy viscosity. This effect is well known in 
turbulent fluidized beds used in coal combustion in which the solids accumulate at the wall. 

An interesting theoretical study of the turbulent gas-solid upward flow in a fluidized catalyst 
cracker presented by Iske et al. (1995) gives rise to segregation with particles on gas in the center. 
Equation [9] of their paper defines an effective viscosity of the suspension as a function of the solid 
particle fraction: 

P~ff, s = p~¢(e) Ox/~J~(E) [13] 

where p~ is the density of the particle, e is the solid fraction, ~(e) is the mean free path length of 
the particle in a suspension, 0 = ~a'a' is the pseudo-energy, andre(E) is a transport property of the 
particle phase. The functions ~(E), 0(E) and f~(E) obtained from collision theory of gas-solid 
suspensions can be expressed as (Sinclair & Jackson 1989) 

~(E)OCE -~, [14] 

0(E)OC[E(1 + 4Eg0)]-', [151 

j](e) ocEI(l + ~Eg°)2 + 768E2 ] 
go ~ go , [16] 

g0(E) = [1 -- ( ~ ) E  \1/37-1j" 
[17] 

A plot of the effective viscosity function using the above equations in terms of the solid fraction 
is shown in figure 3. 
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Figure 3. Effective viscosity function in a gas-solid suspension. 

The computat ion made by Iske et al. shows a core region with very low solid fraction and a 
dense region near the wall (the annulus). We then conclude from their data that the effective 
viscosity is much higher in the core than in the annulus. Notice that the turbulence of  the gas flow 
in the center has been neglected in the equations. I f  it is considered, the effective mixture viscosity 
in the core may be even higher. 

Our proposit ion then is that the high viscosity material of  a two-phase flow tends to migrate 
to the core where the shears are low and that an effectively high viscosity core can be created 
dynamically by turbulent fluctuations. The region near the wall where the shears are higher has 
a comparatively low viscosity. 

2. S L U G G I N G  IN G A S - L I Q U I D  FLOW 

This is apparently a different subject than the stability of  annular gas-liquid flow. But the 
slugging mechanism to be proposed here is also motivated by core-flow of  heavy oil; the mechanism 
which steepens the waves at the front of  crest ought also to work in gas-liquid flow. 

Various mechanisms for the initiation of  slugs in gas-liquid flow have been proposed (see Fan 
et al. 1993). However, the problem remains open. Here, we propose that the slugs are initiated by 
a nonlinear wave steepening mechanism associated with the high stagnation pressure at the front 
of  wave crest on the liquid over which high speed gas passes. The formation of steep wave fronts 
in core-annular  flows of  heavy oils was proposed by Joseph in a paper on capsule transport  in 
pipelines by Feng et al. (1995). The wave distortion mechanism is robust and occurs both in low 
and high speed flows, in linear and nonlinear flow. In high speed flow over a body, without walls, 
on an unbounded domain, high stagnation pressures are at the front of  the body, with pressure 
relief due to separation at the back. In lubrication theory even at low speeds, in Stokes flow, the 
pressure is high where the flow channel converges and low where it diverges. Such converging and 
diverging channels are formed by any wave near a wall with convergence at the front of  a wave 
crest, divergence at the back. Naturally, a symmetric wave is unstable in such an environment, since 
the high pressure at the front will inevitably steepen the wave there and the low pressure at the 
back side will have the opposite effect. Secondary motions driven by high stagnation pressures are 
generated at steep wave fronts and the stagnation pressures grow strongly with an increase of  
the slip velocity. All these effects can be observed routinely in experiments and the effects of  inertia 
in wave steepening have been obtained by direct numerical simulation by Bai et al. (1996) and are 
discussed in a review paper  by Joseph et al. (1996). 

We are proposing that this dynamics which leads to large waves, steep at the front and smooth 
at the rear, as in figure 4(b), applies even more strongly in high speed gas-liquid flows where wave 
distortion due to high and low pressures is enhanced by the fact the mobility of  water-like liquids 
is so much greater than the mobility of  heavy oils. The steep waves are definitely not long, but 
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Figure 4. Slugging in gas-liquid flow. The high pressure at the front side steepens the wave and the low 
pressure at the back side smoothes it. If the amplitude of the wave is large enough it will touch the wall. 
Bernoulli effects can also suck the liquid to the wall when the gas velocity is large. Note that we have 
avoided drawing the ripples and small roll waves which are probably always superimposed on the 

gas-liquid interface. We focus on the macro-structures. 

they are  no t  so shor t  as the ' r ipp le s  and roll  waves which form on them by mechanisms  re la ted 
to K e l v i n - H e l m h o l t z  instabil i ty.  

The fo rma t ion  o f  steep asymmetr ic  waves does  not  a lways  lead to slugging in core flows o f  heavy 
oil in water ,  so tha t  the ca r toon  leading f rom steep waves in figure 4(b) to slugs in figure 4(c) is 
less universal  than  the one f rom figure 4(a) to 4(b). Firs t ,  we note  tha t  in high speed gas flows the 
low pressures  due to Bernoul l i  effects at  wave crests would  tend to pull  the mobi le  water  to the 
wall. I f  the wall  were hydrophi l l ic ,  these wave crests would  stick to the wall  en t rapp ing  gas to form 
slugs. A n  interest ing quest ion is if  there is a difference in the dynamics  o f  slugging with hydrophi l l i c  
and  h y d r o p h o b i c  walls. 

A s imil iar  mechan i sm m a y  also work  in the case o f  b r e a k d o w n  o f  d i s tu rbance  waves a long a 
ver t ical  gas - l iqu id  interface.  Hewi t t  & Ha l l -Tay lo r  (1970) showed pictures  (see figure 5) o f  
b r e a k d o w n  of  d i s tu rbance  wave by  "unde rcu t t i ng"  observed in exper iment  by Lane  (1951) for the 
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Figure 5. Breakdown of disturbance wave by "undercutting" (after Hewitt & Hall-Taylor 1970). 
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shatter of droplets in high velocity air streams. Their explanation describes how the breakdown 
process develops but not how this "undercut" gets started. In fact, the stagnation pressure acting 
on the front of the crests of the small waves would tend to deepen troughs at the front and smooth 
them at the back, as in the cartoon shown in figure 5. Bernoulli effects should also be very 
important in a flow as fast as Lane's, pulling the wave out as shown in the cartoon. The "undercut" 
then follows subsequently. Of course, gravity is an actor in all this and the relative importance of 
the different effects is as yet unknown. 

3. CONCLUDING REMARKS 

A criterion for the stabilization of annular flows based on the comparison of the effective 
viscosities of the fluids has been proposed here. Annular flow is stable when the fluid having the 
higher effective viscosity occupies the core region and lower viscosity fluid is in the annulus. This 
criterion can be expressed in terms of a two-phase Reynolds number involving the inertia of the 
gas phase in the tube and the viscosity of the liquid. The model is very simple and introduces 
another fundamental idea: stability of gas-liquid annular flow requires inertia of the gas. 
Comparison with existing flow maps for both horizontal and upward vertical annular flows show 
that indeed the proposed criterion is satisfied in almost the entire region of annular flow. The model 
is expected to hold only in forced convection flow. It is inappropriate to compare it with data for 
downflow because in this case gravity plays an important role in the stabilization of annular flow. 
Thus, the criterion may provide a method for determining conditions for stable pressure-driven 
annular flow for any pipe inclination. The criterion also appears to work in a variety of liquid-solid 
and gas-solid flows. 

A mechanism for explaining the wave growth and initiation of slugs in gas-liquid flow, which 
is based on the action of a high stagnation pressure in the front of an initially small wave has been 
proposed. The same mechanism can explain the initiation of the "undercut" of wave crests and 
shatter of droplets observed in annular gas-liquid flows. 
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